Exercises Module 3

Exercise 3.1

We saw in exercise 2.6 that the speed is only radial and independent from 8 (by symmetry):

v=v,.(rz)

We consider a creeping flow (i.e. inertia forces are negligible in front of viscosity forces).

The Navier-Stokes equation, simplified (neglecting convective terms v.V(pv)) and projected

on e, gives:
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On the other hand, the continuity equation gives:

%——(rvr) + - %(/Pve) + ]/P/Vz) =0

stationnary vg =0
Therefore:
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Which allows to simplify further the Navier-Stokes equation (Equation 1):
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We want the velocity profile v,.(r, z)
We will need 2 boundary conditions in z and one for the pressure:
B.C.1:v,.(r,b) = 0 (noslip)

B.C.2 : v.(r,—b) = 0 (no slip)

dvr

(alternatively) B.C.2 : = 0 (symmetry condition)

B.C.3: p(ry,z) = p, (e.g. atmospheric pressure)

+ % Equation 1
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Equation 4



To solve this differential equation, we have to examine the situation. We already know that
the pressure only varies radially (when ignoring gravity) so p = p(r)

Moreover, from the continuity equation (Equation 3):

d
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Therefore rv, = f(2)
Replacing in equation 4:
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Note: it is possible to find this differential equation directly by taking the equation we
demonstrated in exercise 2.6, by neglecting the advective term (only leaving the viscosity

term):
dp d?(rv,) 4
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Therefore:

dp  d*(rvy)
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To solve this equation, we need to realize that the left-hand side term is a function of r only,
whereas the right-hand side term is function of z only (as stated above p = p(r) and rv,. =
f(z) ). Consequently, the only possibility for these two functions to be equal for all values of
r and z is that they are both equal to a constant, independent from z and r:
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Therefore we have two equations:
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This introduces another constant for which we will need another boundary condition. Fortunately, we
can assume that p(r{) = p,- Indeed, similar to the laminar flow in the cylindrical pipe, we need to

know the pressure drop per unit length to solve for the velocity profile. Here we can use a similar



argument (we need to know pressure at both inlet and outlet to solve). Therefore we integrate the
first differential equation between r; and r, assuming p; and p, are the respective pressures at these
r’'s (in effect we are using the pressure B.C.s here).
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Replacing in the second equation of the system:
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Integrating twice over z:
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Since the flow is symmetric with respect to the plane z = 0,

v (1,2) = v (1, —2)

This implies that €; = 0 (This can also be found using Alt.B.C.2: % = 0 (symmetry
z=0
condition))
Moreover:
v-(r,b) =0
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Finaly:
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Exercice 3.2
The Stokes flow equation:
uv2v = Vp
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Step 1: determination of the pressure profile

So, in spherical coordinates, alongr:
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And along ©:
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And equation 2 gives:

0p 3V <R>2 _ df 3 uve (R)
90~ 2R .

Therefore :
af
G=0=7O)=0
And:
3Uve (R z
p(r,0) = — R (?) cos 6 + C;

Boundary condition:

p(r > o) =py = C; =py
Finally:
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We now know the velocity and pressure profiles, so we are able to determine the forces
applied on the sphere.

Step 2: pressure forces

2
The pressure at (r=R, 8=n), in “front” of the sphereisp = poy + 3;’;” (g)

2
The pressure at (r=R, 8=0), at the “back” of the sphere, isp = py — 3’;% (g)

Therefore, there is a pressure difference between the two sides of the sphere, which will
induce a net force on the sphere (this is a type of “form” drag, which we will discuss in later
modules).

If we place ourselves in cartesian coordinates, the flow is along the z direction, and will be
symmetric with respect to the sphere along the x and y direction. This means the forces will
compensate along x and y and therefore the resulting friction forces have to be along the z
direction.

The force due to the pressure difference (form frag) on the z axis:
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Step 3: the viscous force

Finally, we need to consider the shear force exerted by the friction of the viscous fluid on the
surface of the sphere:

Again, the resulting force must be along the z axis:
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Only this component of the stress tensor is non-zero at the surface of the sphere under the Stokes flow condition.
This can be seen from the symmetry of the tangential flow or by pluggin the velocity profile into the stress tensor.

In spherical coordinates, for a Newtonian fluid, the stress tensor is expressed:
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Therefore, we have:
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Last step: total force

Therefore, the total force applied on the sphere is:

Fiota1 = Fp + F,, = 6 TRUY

This equation is known as the Stokes’ law and gives the drag force of a fluid on a sphere.



